OPUS

Publikacje pokonferencyjne

1. Bauer, W., Dudek, A., & Baranowski, J. (2022). Recognizing Commutator Motors Fault from Acoustics Signals Using Bayesian Functional Data Depth. In Proceedings of the 26th International Conference on Methods and Models in Automation and Robotics (MMAR 2022) (pp. 227-231). IEEE.

2. Bauer, W., Grobler-Debska, K., Kucharska, E., & Baranowski, J. (2022). Diploma Projects for LAB Equipment Rental – How Students Can Help University in the Covid-19 Era. In Proceedings of the 2022 9th IEEE International Conference on e-Learning in Industrial Electronics (ICELIE 2022). IEEE.

3. Bauer, W., Kucharska, E., Baranowski, J., Kapoulea, S., Bertsias, P., & Psychalinos, C. (2022). How to Teach Fractional Calculus Inspired Electronics Remotely? In Proceedings of the 2022 9th IEEE International Conference on e-Learning in Industrial Electronics (ICELIE 2022). IEEE.

4. Baranowski, J. (2023). Application of Bayesian Functional Gaussian Mixture Model Classifier for Cable Fault Isolation. In Proceedings of the 15th International Conference on Diagnostics of Processes and Systems (DPS 2022) (pp. 254-265). Springer.

5. Baranowski, J., Bauer, W., Dukała, K., Mozyrska, D., & Wyrwas, M. (2023). Attitude Dynamics Modelling: Fractional Consensus Approach. In Proceedings of the IEEE Conference on Decision and Control (CDC 2023) (pp. 3975-3982). IEEE.

6. Dworak, D., & Baranowski, J. (2023). Cross-Domain Spatial Matching for Monocular 3D Object Detection. In Proceedings of the 49th Annual Conference of the IEEE Industrial Electronics Society (IECON 2023) (pp. 1-6). IEEE.

7. Baranowski, J., Kucharska, E., Kawalec, M., Malinowski, P., & Piwowarski, G. (2023). Creating Future Engineers: A Case Study of an Interdisciplinary Undergraduate Course in Technologies for Industry 4.0. In Proceedings of the 10th IEEE International Conference on E-Learning in Industrial Electronics (ICELIE 2023) (pp. 1-6). IEEE.

8. Nesćior, A., Dudek, A., Bauer, W., & Baranowski, J. (2023). Spatial modelling of virus transfer and exposure using Bayesian inference with Integrated Nested Laplace Approximation. In Proceedings of the 27th International Conference on Methods and Models in Automation and Robotics (MMAR 2023) (pp. 1-6). IEEE.

9. Dudek, A., & Baranowski, J. (2023). Chebyshev Polynomials for Efficient Gaussian Process Computation. In Proceedings of the 27th International Conference on Methods and Models in Automation and Robotics (MMAR 2023) (pp. 1-6). IEEE.